
Semiotic Agent Models for

Simulating Socio-Technical Organizations

Cli� Joslyn �

Prepared for the DS Project, PSL/NMSU
September, 1999

Contents

1 Introduction 2

2 Agents for Simulation 2

2.1 Agent Concepts in Di�erent Disciplines . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Properties of Agent Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3 Semiotic Agents: Autonomy and Freedom of Decision-Making . . . . . . . . . . . . . 5

3 The Semiotic Approach to Agent Modeling 6

3.1 Systems Foundations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.2 The Architecture of Semiotic Agents . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.3 Semiotics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.4 Consequences of the Semiotic Perspective . . . . . . . . . . . . . . . . . . . . . . . . 10

3.4.1 Bounded Freedom on Decision Making . . . . . . . . . . . . . . . . . . . . . . 10

3.4.2 Agent Dependence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.4.3 Internal Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.4.4 Dynamical Opacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.5 Summary: The Semiotic Approach to Agent Modeling . . . . . . . . . . . . . . . . . 12

4 Socio-Technical Organizations 12

4.1 The Architecture of Socio-Technical Organizations . . . . . . . . . . . . . . . . . . . 13

4.2 Distinctions Among Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5 Agent Simulation of Structured Command Organizations 14

5.1 Structured Command Organizations . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5.2 General Issues for SCO Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5.2.1 Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5.2.2 Fidelity vs. Abstraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5.3 Hierarchical Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5.3.1 Alternate Hierarchical Structures . . . . . . . . . . . . . . . . . . . . . . . . . 16

5.3.2 Structural vs. Functional Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . 18

5.4 Communication and Knowledge in the SCO Environment . . . . . . . . . . . . . . . 18

5.5 Command as Constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

�Distributed Knowledge Systems Team, Computer Research and Applications Group (CIC-3), Mail Stop B265,

Los Alamos National Laboratory, Los Alamos, NM 87545, USA, joslyn@lanl.gov, www.c3.lanl.gov/~joslyn, (505)

667-9096.



2

Abstract

In this document we survey the issues surrounding the approach to modeling Socio-Technical

Organizations (stos) based on semiotic agents. We begin with a brief survey of agent concepts

and applicability, and then introduce the semiotic approach speci�cally. We then introduce and

describe stos. While our approach is general to stos, we are especially interested in exploring

particular kinds of stos such as 911/ers, search and resuce operations, military organizations,

and others which are characterized by a hierarchical or Structured Command Organizations

(scos). We conclude by introducing scos and considering some of their special considerations.

1 Introduction

The world around is becoming composed of systems involving computer-human interaction of un-

precedented scale and complexity. The modern environment is an interlocking collective of large

numbers of groups of people interacting with computer systems, and which themselves interact

with a variety of physical systems to maintain them under conditions of good control. The vast

complexity and quantity of information involved makes simulation approaches necessary, and yet

the existing formalisms available for simulation are not su�cient to re
ect their full characteristics.

In particular, simulations built on strict formalisms such as discrete-event systems or hybrid con-

trol cannot capture the inherent freedom available to humans interacting with such systems; and

simulations built on classical rule-based Arti�cial Intelligence (AI) approaches are too brittle and

speci�c to allow for the emergent phenomena which characterize such systems.

In this document we argue that an agent modeling approach between collective automata sys-

tems such as used in Arti�cial Life (ALife) and full AI may provide a robust capability to simulate

human-machine interaction at the collective level. We call this approach semiotic, as it focuses on

the use and communication of symbols by and between agents and their environments.

Below we �rst discuss the current state of the use of agents with respect to both decision theory

and modeling and simulation. We then outline the semiotic approach to agent simulation, and then

our view of the Socio-Technical Organizations (stos) intended to be modeled.

While our approach is general to stos, we are especially interested in exploring particular kinds

of stos such as 911/ers, search and resuce operations, military organizations, and others which

are characterized by a hierarchical structure of command. We characterize these as Structured

Command Organizations (scos), and conclude by considering some of their special characteristics.

We note that this document is written in close conjunction with Rocha's \Review of Agent

Models: Encounters, Strategies, Learning, and Evolution", also provided this distribution. We will

avoid duplicate development of material included there, but rather cite it frequently, referring to is

as [Rocha p. x].

2 Agents for Simulation

Recent developments in software engineering, arti�cial intelligence, complex systems, and simu-

lation science have placed an increasing emphasis on concepts of autonomous and/or intelligent

agents as the hallmark of a new movement in information systems. The history of computer sci-

ence has seen a \march of paradigms", as programming theory has moved from procedural through

functional to object-oriented models, now culminating in this agent-based approach [9]. Below we

consider some of the fundamental properties of the agent approach, and distinguish classes of agent

systems.
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2.1 Agent Concepts in Di�erent Disciplines

It has become acceptable to use the term \agent" in a dizzying array of approaches and applications:

Robots: The pedigree of agent concepts in technical �elds probably begins with robots as the

paradigmatic examples of autonomous agents. Increasingly, behavior-based robots are seen

as even better examples, since their behaviors are emergent, and thus more autonomous,

rather than pre-programmed [Rocha, pp. 2-3].

Information Systems: The use of agent concepts speci�cally arose in information systems, where

agents are commonly thought of as independent actors usually acting as stand-ins for users in

various negotiation tasks. Common are \helpers" agents. In help systems in single applica-

tions, agents are sometimes given anthropomorphic properties, as with \avatars" (Microsoft's

ill-fated \Bob" is an example). In networked environments, independent agents are deployed

to gather information for users autonomously. Recently economic negotiations are being used

as agent-based applications [11, 26].

Software Engineering: Agent conepts have also quickly grown to be important in standard soft-

ware engineering. Indeed, objects (as used in object-oriented engineering approaches) have

many \agent-like" capabilities, especially encapsulation. It has become common to think

of agents as \super-objects", combining encapsulation with autonomous process control and

indpendent threading. Such ideas are the natural continuation of old-fashioned daemons and

even DOS TSRs, which have agent-like capacities in terms of their asynchronous availability.

Arti�cial Life: The ALife research community also commonly describe their applications as \agent-

based". Many ALife applications can best be described as \collective automata", where a

relatively large collection of relatively simple state-determined systems are connected accord-

ing to various complex temporal or topological schemes in order to demonstrate \emergent

behavior".

We note that most of these models are e�ectively implementations of distributed dynamical

systems with certain network topologies. An example is the wok of Kautz, Selman, and

Milewski [23], who use a relatively simple Markov process distributed over a random graph

to represent the referral pattern of expert knowledge over a network. While they use both

agent and AI terminology, there is little in the work which requires or even uses these agent

ideas explicitly.

Other ALife approaches embed their agents in virtual environments where the dynamical

properties are coupled to interactions with environments and other agents. One example

here is the work of Ackely and Littman [1], discussed in [Rocha pp. 11-15]. Another is that

of Pepper and Smuts [28], who demonstrate the development of altruistic behavior, where

it has not been found before, in virtue of coupling agent models in interaction with virtual

environments.

Arti�cial Intelligence: In AI, complex actors with a great deal of on-board computational intel-

ligence and planning ability are commonly and increasingly described as \agents". Of course

the AI approach is radically di�erent from the ALife schools. Recently Sloman and Logan

[33] have provided a good discussion of the agent concept as used in AI. While they recognize

a diversity of approaches, they emphasize the role of planning dedicated to solving speci�c

tasks, and this is the orientation which dominates this agent approach.
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An example is the work of Stilman [34], who deploys agent models of aircraft systems in a

virtual reality of a small grid. It should be noted, however, that Stilman's agents actually

have no autonomy, as their behavior in the grid is governed strictly by their deterministic

(and o�-board) planning systems.

Another example is that of Delgado et al. [8], who use a highly speci�c and complex fuzzy rule

based learning and planning architecture among a small collection of agents for the purposes

of approximating an analytic function.

Decision Theory: Finally, political scientists have also jumped on the agent bandwagon. In

particular, in theories of how a group of individuals come to a collective choice, each individual

in the group is represented as an agent. These researchers are mostly concerned speci�cally

with the decision making capabilities of agents, either collectively or in groups, rather than

other aspects of agents in general.

Examples include the work of Richards [31] [Rocha pp. 18-19], Wolpert [36], and their col-

leagues. We can see these approaches as the ultimate departure of the agent concept from its

roots in robotics, in that pure decision making is considered divorced from any interaction

with environments, either real or simulated.

2.2 Properties of Agent Systems

We are interested here in abstracting away from these disparate senses of agency and large collection

of speci�c examples of agent systems, in order to discern �rst their common properties, and then

their de�ning properties. First, we can see agent concepts clustering around a relatively small set

of application types:

1. In information systems, to help with their simulation and engineering, as well as their user

interfaces (for example the helper bots).

2. For the simulation of complex dynamical systems, as with most of the ALife applications.

3. In the simulation of natural systems such as organisms, humans, ecologies, economies, and

societies.

Our interests extend to a mixture of 2 and 3, attempting to cast human organizations as

collections of agents, but with aspects of dynamical systems more typical of collective automata.

Then, we �nd that agents have most or all of these properties:

Asynchronous: Agents act independently in time, commonly implementing some mecahnism for

concurrency, parallelism, or independent control threads.

Interactive: Agents communicate and interact in a somewhat \social" manner, forming a collec-

tive entity through their interaction.

Mobile: Agents have some form of capacity for \movement", although this can have many di�erent

aspects: movement in a real, virtual, or simulated space, or movement of code or data among

agents or between agents and their environments [24].

Distributed: Again, individual agents which make up agent systems are distributed in a real,

virtual, or simulated space.
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Random: Finally, some aspect of agent systems is non-deterministic. Either individual agents

have non-deterministic behavior, or a large space of parameters of deterministic agents is

searched through statistical trials.

2.3 Semiotic Agents: Autonomy and Freedom of Decision-Making

While the list of characteristics above is common to most agent models, they still do not capture

the essential qualities which most people bring to the concept of \agency". These qualities are a

kind of independence, the fact that the agent is doing something of and by itself. This refers to a

kind of self-control, or, in a word, autonomy. From this property alone, all of the above follow.

Autonomy is an old concept, literally meaning \self-governing", from the Greek auto (self)

and nomos (law).1 Autonomy has connotations of both independence and separateness, and was

originally used to refer to political organizations, as in national autonomy. Thus we recognize the

following aspects of the concept of autonomy [20]:

Boundaries: Autonomy assumes that you can distinguish a particular domain over which the

agent has control, and thus a boundary between what the agent controls (what it is au-

tonomous over) and what it does not. But boundaries can exist with respect to many modal-

ities, for example spatial, temporal, or functional boundaries.

Quantitative: Similarly, it is clear that autonomy admits to degrees, that something can be more

or less autonomous, perhaps more in one of the modes mentioned above than in another.

Identity: The existence of a (perhaps partial) boundary implies some form of discreteness, and

thus the ability to distinguish between that which is inside and outside the boundary. What

is distinguished as inside thereby forms the identity of the agent.

Closure: Finally, everything we've said so far implies a form of (again, perhaps partial) closure,

where those aspects of the world which are entrained within the boundary (identity) of the

agent are then closed o� from other interactions. As with boundaries, closure can take

many forms, from physical (structural boundaries), causal (some form of encapsulation), or

functional (closure of input/output mapping).

The list of properties above is actually quite familiar to us. First, these ideas are present either

implicitly or explicitly at the foundations of systems theory [2, 4, 21]. Indeed, based on the above

criteria there is very little to distinguish an \agent" from some general sense of \system".

Secondly, it parallels in some ways Holland's categorizations [13], as discussed in [Rocha pp. 3-

4]. Boundaries and closures are all fundamental to the ability to aggregate (wether internally in

terms of categorization or externally in terms of collective emergence); his tagging is essentialy our

identity; etc. Rather, I would assert that Holland's list is actually rather close to a description of

what would constitute a general systems approach to the delineation of various classes of meta-

systems (multi-system systems). Indeed, it can also be claimed that other movements in computer

science, for example the rise of object-oriented concepts, mirror the general systems approaches.

So what we need to do is approach a coherent sense of agent that will be distinguished not only

from other software engineering senses (agents are not just subroutines or objects), but also from

\objects" or \systems" in general (agents are not just systems). To do so, we focus on the concept

of autonomy with respect to action. In other words, our concept of agent is a system (object)

1Note that this is not, as is commonly thought, etymologically related to self-reference, in that autonomy is not

about self-naming, from the Greek nomen (name).
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which has an inherent freedom to make choices or decisions over possible actions. This is what

Rocha, from Aquinas, refers to as election [Rocha, p. 1].

We will call such agents semiotic agents to distinguish them from all others. We will discuss

the use of the term \semiotic" in this context below. Therefore, following Rocha's discussion of

dynamical coherence vs. incoherence [Rocha pp. 1-2], we can distinguish broadly semiotic from

\dynamic" agents.

Dynamic:

� Possess functional or causal autonomy.

� Are dynamically coherent with their environments.

� Have input, output, and state.

� Allow dynamic self-organization (attractor behavior).

� Examples:

{ Physical systems following natural laws

{ Purely instinctual agents following natural propensities

Semiotic:

� Possess autonomy of action

� Dynamically incoherent with environment

� Also have memory.

� Examples:

{ Software agents of su�cient complexity

{ Organisms, people

Of course, this distinction is another expression of some common ideas in the literature. In

particular, it is close to AI concepts of \reactive" vs. \deliberative" processes [33], and indeed, we

would argue that all (deliberative) AI systems are semiotic in that sense. However, we are also

motivated by the ALife and complex systems critique of AI, which allows for emergent phenomena

through autonomy as opposed to external programming of elaborate internal models and planning

mechanisms. Thus our goal is to construct semiotic agents which are su�ciently, but minimally

su�ciently, complex to have autonomy of action.

3 The Semiotic Approach to Agent Modeling

3.1 Systems Foundations

Our perspective on semiotic agents is rooted in systems-theoretical foundations. In particular, we

distinguish systems (and thereby agents) from their environments, and recognize the possibility of

emergent behavior only from system- (agent-) environment interaction [32]. A single agent is thus

considered related to a (perhaps virtual) physical environment (left side Fig. 1). We will call this

its \absolute environment".

Of course we said agents come in collections, or \societies". In this case, the system-environment

distinction can become complex. In particular, as shown on the right of Fig. 1, agents in multi-agent
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Physical
Environment

A1 A2

Physical
Environment

  A1  .

Figure 1: (Left) An agent interacting with its absolute environment. (Right) Agents interacting

with their relative environments, also consisting of other agents.

systems interact with \relative environments" consisting of the \physical" environment as well as

all the other agents.

In particular, if agents do have internal models of their environments, then these models must

represent not only the absolute (\physical") environment, but also the other agents, and in partic-

ular the other agent's models. In this way, we arrive at various \re
exive" modeling strategies, for

example as developed by von Foerster [35] or Lefebvre [25].

Considering collections of agents (agent systems) further, we can consider a variety of potential

types:

Small collections of simple agents: In the limitting case, a few simple state-determined au-

tomata can be composed into higher-level automata. Similarly, simple robot interactions can

frequently be modeled completely, although at a higher hierarchical level. In general, such

systems have the possibility of analytical global descriptions.

Large collections of simple agents: This is the traditional ALife approach, where a large col-

lection of simple state-determined automata are combined according to particular network

or topological relations. The large collections allow for emergent phenomena at the level of

dynamical attractors (a now-classical example is the work of Kau�man [22]). In the limitting

case, this approaches statistical physics, and the approaches taken are similar, relying on

experimentation and statistical descriptions.

Small collections of complex agents: This is the traditional AI approach, where a relatively

small collection of highly intelligent agents interact cooperatively or competitively. Usually,

both the environments, tasks, and planning strategies used are highly tuned to the application

desired, and there is little empirical exploration of a variety of possible states, parameters, or

initial conditions, let alone architectures.

Our goal is to aim solidly between the ALife and AI approaches, implementing agents which

are relatively simple, and thus whose collections can have emergent properties, but with su�cient

memory bases and uncertainty structures to allow for deliberative capabilities.
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3.2 The Architecture of Semiotic Agents

The fundamental architecture we are proposing for semiotic agents is shown in Fig. 2. The system

takes measurements from its environment, and constructs generalized \beliefs": stored representa-

tions of the current state and memories of past states. There is also an internal representation of

\desires", namely potential goals states. A decision node decides among potential actions, which

are then taken back into the environment. Finally, those actions interact with the dynamical pro-

cesses in the environment, which then feed back to the agent in the form of future perceptions. In

this way, the consequences of the agent decisions have an explicit impact on its future development.

"Beliefs"
(Current and
past states)

Agent

World' World

Measurement

Environment

Action

Dynamics

Decision

"Desires"
(Goal states)

Figure 2: Architecture of a semiotic agent.

This architecture is based on the principles espoused above, in particular:

Generalized Control Architecture: The autonomy of the system is allowed by its manifestation

of a closed causal relation with its environment, in particular a generalized control relation

[29, 30]. Through this relation, the agent takes decisions to make its beliefs as \close" as

possible to its desired state in order to reduce a generalized \error function". Thus semiotic

agents manifest a generalized negative feedback control relation.

System-Enviornment Distinction: The agent's tight coupling with its environment across the

system-environment boundary is absolutely essential. The consequences of agent decisions

are always re
ected, through the environmental dynamics, back to the agent in terms of more

stored memory states.

Deliberation and Election: The autonomy of action necessary for semioic agents is allowed in

virtue of the dynamical incoherence of the memory structure and the indepenent representa-

tion of the decision function.

Simplicity: Semiotic systems are not AI systems. Rather, beliefs and desires as relatively simple,

non-propositional uncertainty structures.



9

3.3 Semiotics

So far we have not motivated the speci�c use of the term \semiotic" to describe our agents. What

characterizes these systems is that they involve processes of perception, interpretation, decision, and

action with their environments. The memory structures required by such dynamically incoherent

systems fruther entails the presence of representations stored internally to the agent, in particular

of measured states of a�airs, goal states, and possible actions.

It is for this reason that we turn to semiotics, or the general science of signs and symbols.

Originally a humanities sub-�eld of linguistics [6, 10], semiotics has come to become more promi-

nent �rst in text and media analysis, and then in biology [7], computer engineering, and control

engineering [27].

Semiotic processes involve the reference and interpretation of sign tokens maintained in coding

relations with their interpretants. Thus semiotics in general is concerned with issues of sign ty-

pologies, digital/analog and symbolic/iconic representations, the \motivation" (intrinsic relations

of sign to meaning) of signs, and mappings among representational systems.

Semiotics further decomposes semiotic relations along three axes:

Syntactic: Concerning relations among sign tokens, the production of new tokens, and the formal

properties of symbol tokens as used in symbol systems.

Semantic: Concerning the interpretation of tokens by agents as standing for environmental ob-

servables.

Pragmatic: Concerning the repucusions of those interpretations for the agent in its environmental

context, in other words, the purposes or goals of sign interpretation.

Semiotic relations are characterized by being codings, or in other words contingent func-

tional entailments. In particular, they are entailments, meaning regularities of constraints in

system relations; which are functional, meaning deterministic (equivalent to a mathematical func-

tion); and which are contingent, namely that other such functional entailments (coding relations)

could have been possible [17]. This concept captures the arbitrary coding nature of symbol sys-

tems: the symbol and its referent share no properties in common except that the symbol refers

to its referrent when interpreted by an agent acting within the constraints of the symbol system.

These are contrasted with purely physical systems, which are characterized by necessary functional

entailments. Note that this distinction roughly parallels that between dynamical coherence vs.

incoherence.

A simpli�ed example will serve to illustrate this point. Let O be a simple organism which

lives near an oceanic thermocline with warm water above and cold water below. O acts as a

semiotic control system in relation to the thermocline. Its perception is a single critical variable of

temperature with states

X = f+ = too hot;� = too cold; 0 = just rightg;

and it has a single variable action with states

Y = fu = go up; d = go down; n = do nothingg:

There are 33 = 27 possible functions f :X 7! Y , any of which the agent could invoke to make

a decision to take a particular action. But only the three shown in Table 1 will result in stable

negative feedback control. In all other cases, positive feedback, and not negative feedback, will
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x f1(x) f2(x) f3(x)

+ d d d

� u u u

0 n d u

Table 1: Functions su�cient for semiotic control.

result, with a corresponding runaway behavior: either the organisms will continue to ascend when

warm, and thus boil; or descend when cold, and thus freeze. While any of the three will result in

the organisms survival, f1 is the best default selection, since it minimizes unnecessary action and

results in smoother and faster control.

Note that there is no fundamental natural law of the universe which requires f to be selected

according to the principles of negative feedback. Instead, this selection is contingent on, and results

from, the process by which the system is constructed.

3.4 Consequences of the Semiotic Perspective

There are a number of important consequences which follow from the adoption of this semiotic

approach to agent modeling.

3.4.1 Bounded Freedom on Decision Making

Perhaps the most fundamental is the recognition that semiotic agents operate in a context of

bounded freedom on their decision-making capacities. We have emphasized that they have some

freedom over decisions, otherwise they would not have autonomy of action. But on the other hand,

they operate in contexts in which there are constraints from many sources. Recently, researchers

have demonstrated that such constraints can be crucial in providing robustness and stability in

multi-agent systems. These include:

Virtual Physics: Agents can be embedded in a virtual physical environment, whether simulating

aspects of a real environment or a purely synthetic world. Decisions about actions are thereby

constrained relative to the properties of these environments.

Gordon and Spears [12] have simulated distributed sensor grids exploiting an agent model

interacting with an environment which manifests a certain limitted virtual physics. They

have shown that they can achieve hexagonal or square grids based on the dynamics of the

agent interactions with those \natural laws".

Similarly, Pepper and Smuts [28] have demonstrated the development of cooperative and

altruistic behavior in simulated ecologies, but only when the environment had a rich enough

\texture" of simulated vegetative diversity.

Communication: Agents can coordinate actions and learn about the physical environment through

communication. Decisions about actions are thereby constrainted by the semiotic systems

used to record, transmit, and interpret information.

Perhaps the best example here is the long-standing semiotic work of Edwin Hutchins [14, 15]

(see also [Rocha p. 17]). In both real naval stos and agent simulations of communication

processes, Hutchins and his colleagues have demonstrated that the ability to create, manipu-

late, share, and interpret shared symbol tokens within sign systems is a necessary capability

to develop robust organizational dynamics and collective cognition.
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Shared Knowledge: Finally, decisions of agents may be constrained by a shared set of knowledge

or beliefs, for example through a common biological evolution or cultural transmission (train-

ing or education). A cogent example here is the work of Diana Richards and her colleagues

[31], discussed fully in [Rocha pp. 18-19].

3.4.2 Agent Dependence

Knowledge in these systems is necessary agent-relative, implying a kind of subjectivity, relativism,

or constructivism. This follows from the fact that semiotics emphasizes the necessity for signs to

be interpreted by agents in order to be meaningful: signs (symbols) never have meaning in and of

themselves, but only as interpreted by an agent. Thus knowledge is local, and agents only have

access to the world-as-perceived. There is then a dependence on measurable quantities, many of

which are given from the construction of the agent.

3.4.3 Internal Models

So far, we have introduced semiotic agents as deliberative control systems involving internal repre-

sentations of their environment, but not yet explicitly involving internal models. We have argued

[19, 20, 21] that models and control are distinct, but canonical, examples of semiotic systems; and

further that model-based or anticipatory control, where explicit predictions of the consequences

of future actions are used to make decisions, are a necessarily more complex form of control than

might be required. This is a di�cult and deep point in the history of systems theory [5], and we

will consider it further elsewhere.

3.4.4 Dynamical Opacity

We have argued that the freedom of choice which semiotic agents necessarily have is related to a

form of nondeterminism. Indeed, it can be argued that a simple stochastic automata has many of

the characteristics of a semiotic agent, and conversely a complex semiotic agent might appear to

act as a simple stochastic process from an external perspective.

In other words, our common sense of election implies an entity making an intentional, deliber-

ative choice among a set of possible actions. However, from an external perspective, it might not

be possible to determine whether the system is acting with this sense of freedom or is simply a

non-deterministic system. Moreover, a system may in fact be deterministic, but of such complexity

that we can simply not identify its transfer function.

To a certain extent we are comfortable equivocating between an \ontological" perspective based

on how the system \really" is, and an \epistemic" perspective which is only concerned with possible

external models which can be constructed so as to describe systems. In this sense, we claim that

semiotic agents have a form of dynamical opacity, in that they cannot be modeled as dynamical

systems or simple state determined systems, even if they are in fact implementing some form of

formalism. Of course, any deterministic system of su�cient complexity (and any chaotic system)

can fall prey to this condition.

So our position is not that semiotic systems necessarily are deliberative systems, but rather

instead that it is required that they be modeled as decision-making systems. Thus while we are

aiming to construct agents with deliberative capacities, we are prepared to admit systems with

simpler arhictectures as semiotic agents.
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3.5 Summary: The Semiotic Approach to Agent Modeling

Here we summarize some of the important conclusions to draw about agent modeling from a semiotic

perspective, before turning our attention to stos in particular.

Environment: Perhaps the most important consideration is that simulated agents operate within

environments which have their own rules, or their own \virtual physics".

Action Capabilities: Agents have action capabilities which must be considered relative to those

environments.

Decision Capabilities: The possible decisions that agents can make must be considered relative

to those possible actions. Thus we assert that pure decision models such as [31, 36] cannot

fully realize the full emergent capabilities of agent communities in complex environments.

While we should not focus on a decision capability to the exclusion of a broader simulation,

nevertheless this is clearly the most important component, and of most interest to this re-

search project. Rocha [Rocha] has provided a thorough survey of classes of decision-making

capabilities in agents, from encounters to strategies to learning and evolution. We will just

summarize these here, in increasing order of complexity, as:

� Deterministic input/output state systems.

� Mutable transfer functions in terms of evolutionary (external selection) or adaptive (in-

ternal selection) processes.

� Finally, the use of culture as shared knowledge among agents to aid in agents decision-

making.

Data: Data is seen as information transmission among agents.

Knowledge: Knowledge is seen as the interpretation of data by agents

Internal Structures: Can be characterized in terms of state, memory, and decision functions.

Communication: Among agents must be seen as relative to the knowledge and internals of the

agent.

Control: Is seen as a form of decentralized constraint over decision-making in agents, potentially

from many sources, including everything above.

4 Socio-Technical Organizations

We now move our considerations closer to the application area. There is currently a great need

to bring computational, simulation, and information scienti�c tools to bear on the problem of

representing and controlling complex systems which involve a great deal of interaction between

human organizations and computer-based distributed information systems.

We call such systems socio-technical organizations (stos), prime examples of which include:

� Hierarchical command organizations such as 911/Emergency Response Systems (911/ers),

search and resuce operations, and military organizations.

� Utility infrastructures such as power grids, tra�c and transportation systems, gas pipelines,

telecommunications systems, electronic markets, and the Internet.
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The pressing needs are to assess the stability and vulnerabilities of stos, and to protect their robust-

ness against disruption in the event of destablizing forces, such as inherent dynamical instability,

structural modi�cation, or information disruption or disinformation, perhaps through deliberate

attack or sabatouge. Our contention is that semiotic agent modeling approaches will be useful for

simulating systems of this kind.

4.1 The Architecture of Socio-Technical Organizations
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Figure 3: Socio-Technical Organizations.

stos are characterized by a complex structure involving the hybrid interaction of physical systems

with agent (human) organization. This involves, in order of increasing time scale, as shown in

Fig. 3:

� At the lower level is a target system, which itself consists of two levels:

{ At the lowest level is a physical system which is deterministic (typically, and as we

will assume here, a continuous dynamical system), involving the 
ow of physical objects

or substances through a complex enviornment (\terrain").

{ Above that is an information network which is semi-automated, largely computer-

based, and dependent on data acquisition, telemetry information, and control actions

with the dynamical system.

� The target sytem acts as the environment to an organization of (human or computationl)

agents or actors, which also has a complex structure:

{ At the lowest organizational level, operators are atomic units which interact in pre-

scribed ways with the information network.



14

{ At higher supervisory levels, supervisors can establish operational boundaries over

lower or parallel systems, and alter system parameters.

{ Ultimately, the highest organizationl levels involve the goals of the various corporate,

military, and/or governmental organizations involved, including economic and political

forces.

4.2 Distinctions Among Components

In any particular sto, the boundaries among these levels may be drawn very di�erently, or certain

levels omitted. We distinguish the boundary between the target system and the organization by

those components which must be considered as semiotic agents, and those which might not be.

So based on our argument above concerning dynamical opacity, in general what distinguishes the

target system is that it can be modeled as a deterministic, dynamical system, while the organization

cannot. There are potentially a number of reasons for this, for example missing data about, or the

computational complexity of, the organizational level.

In particular, a human, if su�ciently constrained by conditions in the environment or commu-

nication system, might be representable as a deterministic component of the target system; and

conversely, a computer system of su�cient freedom and complexity might be considered part of the

organization.

5 Agent Simulation of Structured Command Organizations

Our project in particular is intended to simulate the emergent decision structures in a 911/ers

system. We look at 911/ers as an instance of a sub-class of stos which we call Structured

Command Organizations (scos). Here we describe scos and consider some special attributes

of their simulation.

5.1 Structured Command Organizations

scos are characterized by a number of special properties:

� The organization contains a large number of units.

� The units are hierarchically organized, both for information 
ow upward and command 
ow

downward.

� The lowest level units are individual humans, perhaps in vehicles.

� The organization must achieve a goal within a distinct time and within a physical environment.

� The environment may or may not contain other organizations with which the sco interacts.

Examples of such systems include:

Disaster Response Systems

911/Emergency Response: When generally characterized, these encompass everything from

routine police and �re calls, to disaster respone as mentioned above, to full-blown national

emergencies requiring virtually military multi-agency response.

Search and Rescue Operations

Non-combatant Evacuation Operations (NEOs)
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5.2 General Issues for SCO Simulations

Here we conider some general issues regarding the simulation not just of scos, but simulation in

general.

5.2.1 Scenarios

It is presumed that any agent simulation developed for this project will have to have speci�ed at

least the following components:

Game Environment: The \game board" and its properties, the game pieces (semiotics agents),

their capabilities, and their goal.

Agent Internals: Belief, desire, and decision structures consistent with the semiotic architecture.

Information Network: Communication channels, modalities, and capacities among agents.

Agent Organization: Organizational structures, largely initial.

These components will de�ne the basic operating scenario for the simulation, and will presum-

ably involve at least movement of a hierarchically structured collection of semiotic agents, if not

other capabilities (e.g. carrying capacity, retrieval, or other specialized actions).

5.2.2 Fidelity vs. Abstraction

A central concern in any modeling e�ort is the amount of �delity strived for, with a balance struck

between �delity and abstraction. In particular, high �delity will require that we build in a lot of

realistic details into the simulation, for example:

� Making the atomic units individual \nodes" rather than mid-level units or just arbitrary unit

at some unspeci�ed level.

� Faithfully representing the communication channels, modalities, capacities, etc. (e.g. voice

and images), rather than a limited number of arbitrarily assigned low-cardinality channels

capable of transmitting sentences in some limited formal language pertaining only to the

game environment.

� Faithfully representing real unit capabilities for e.g. movement and carrying, rather than

arbitrary or relative values like \fast" and \slow", or simple \point values" for carrying

capacity.

� Using the real quantitative scaling relations among units (e.g. four precints in a police district)

rather than arbitrary scalings (e.g. \n level 2s in a level 3").

� And most importantly, representing the actual command hierarchy structure as a tree rather

than allowing any arbitrary structure like a general directed graph (see below).

In each of these cases, if we take the former course rather than the latter, not only do we give

up formal simplicity and elegance in favor of �delity, we also build in initial structure and corre-

spondingly decrease any amount of emergent structure which might develop within the simulation.

It is this emergent structure which we have been explicitly tasked to try to support and recognize.
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Finally, the level of abstraction selected will also determine to a large extent the form of both

initialization and validation of the model. In a highly faithful simulation, speci�c systems are

instantiated to match the \real" system to a high degree, and similarly only a low degree of

divergence between simulated and real data are tolerated as a result. On the other hand, the

results achieved will not generalize to other systems at other scales.

5.3 Hierarchical Structures

Perhaps the most important single property which scos is their hierarchical organization. Consid-

ering an sco as an ALife-type problem, the topology or network structure cannot be a simple 
at

\collective automata", but must re
ect this \echelon" strcuture.

We consider an echelon structure as a generic hierarchy. A minimally simple example (three

levels, two fanout at each node) is shown in Fig. 4 as a point of departure (see also [3] for a military

example). In this structure, command 
ows down, while information 
ows up, down, and across

to siblings.

2,1

1,1

2,2

3,1 3,2 3,3 3,4

Comman

Information

Figure 4: A generic three-level, two-fanout command hierarchy.

5.3.1 Alternate Hierarchical Structures

Figure 5: (Left) A strict hierarchy: tree. (Center) A loose hierarchy: DAG. (Right) A general

graph: contains cycles.

One important consideration for us is to explore alternative structures. Examples of mathematically

possible forms are shown in Fig. 5.

Trees: Classical command hierarchies are representable as mathematical trees, as shown in our

\point of departure" example in Fig. 4. These are highly constrained structures, which we

will call \strict hierarchies".
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DAGs: Slightly less restrictive are general Directed Acyclic Graphs (DAGs). These are still hi-

erarchical in the sense of having distinct levels, but these are \`loose hierarchies", in that a

unit might have multiple parents (commanders) [16, 18].

General Graphs: Finally, even less restrictive are general directed graphs. The di�erence here

is the possibility of cycles, wherein one can end up \commanding" oneself through a cyclic

chain.

While scos do not intend to support either of the two looser structures, we understand that

this might actually occur, at least for periods of time, for example near a boundary between two

units. Loose hierarchical states may occur as transitions from one tree to another, or as stable

states in and of themselves which require explicit representation, as shown in Fig. 6.

Figure 6: Loose hierarchical structures (DAGs) as transitions from one strict hierarchy to another.

Presumably an sco would not tolerate such a situation, and strive to reconstruct itself into

a new strict hierarchy if an unstable situation temporarily destroyed the structure. In this way

what we're talking about are transitions from one hierarchy to another, rather than some kind of

inherently non-hieararchical structure.

Finally, a simple theorem from discrete math says that you can \dangle" a tree from any node

and produce another tree. Fig. 7 shows an example where the interior node b can be elevated to

a \root" status. There has been speculation as to how it might be possible for such situations to

arise under dynamic conditions, where due to local developments, a particular mid- or low-level

unit encounters a crisis situation (for example, locating the rescue target) and then becomes the

focus of resources. The issues here are rather subtle, involving the relation between command and

control as a generalized form of constraint, which is considered a bit more below.

a

b

c d

e

f g

a

b

c d

e

f g

Figure 7: (Left) A strict hierarchy labeled. (Right) A new strict hierarchy created by elevating b

to the root.
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5.3.2 Structural vs. Functional Hierarchy

So far we've been discussing the echelon hierarchy. This is clearly a structural hierarchy of com-

position: a company consists of its platoons, and thus, for example, to move the company means

to move its constituent platoons. There is a corresponding functional hierarchy embedded within

the echelon structure: each unit at each level can move, gather information, take decisions, take

actions, etc. Thus one can talk about e.g. the intelligence gathering hierarchy in parallel with the

supply hierarchy.

Another consideration is that the structure shown in Fig. 4 is actually a two-way hierarchy,

with command down and information up. We understand that units might actually participate in

multiple independent hierarchies, reporting up to a di�erent unit from which one takes command,

as shown in Fig. 8.

Figure 8: (Left) Command hierarchy. (Right) Reporting hierarchy for the same set of units.

5.4 Communication and Knowledge in the SCO Environment

Like command, information and knowledge is also distributed in a hierarchical manner in scos.

And of course the agent organization is mediated by communication amongst its members.

We can identify \transmit" and \receive" as generic agent capabilities, and presumably the

content could be represented as sentences in a simple formal language.

We can recognize multiple possible \channels" for the transmission of messages within the

overall system:

Peer to Peer: \Horizontal" communication.

Superior to Subordinate: Transmission of new goals vertically down.

Subordinate to Superior: Transmission of new beliefs vertically up.

Environment to Agent: Measurement through the information network about anything in the

virtual environment (here considered as the physical environment and the other scos within

it) is probably best conceived of as communication from the environment to any agent.

Note that all of these except the last is anticipated by Fig. 4.

Also note that given a strict hierarchy echelon structure, any emergent structure will be very

dependent on horizontal communication among peers within a unit (e.g. shift commanders within

a police precint) rather then vertical communication among superiors and subordinates.

Possible message properties could include:

Cardinality: Continuous or discrete with various possible cardinalities.
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Con�dence: With a potentially hybrid uncertainty representation.

Meaning: Interpretation of a particular sentence by an agent.

Finally, we need to address the hierarchical nature of knowledge itself. In particular, along the

echelon hierarchy a number of scalings interact:

Space: Higher level units operate over larger areas than lower.

Time: Higher level units operate over longer time frames than lower.

Scope: Higher level units operate with less detail than lower.

Presumably information is also structure according to these criteria, with high-level, abstract,

large-area, and slow-to-update information at higher levels; and low-level, concrete, small-area, and

fast-to-update information at lower levels.

Recall the emphasis that semiotics places on data vs. knowledge, in that knowledge is data which

is interpreted by an agent. Thus even if there is a \broadcast" capability within an sco, where

there is some level of \universal data" available to commanders at all echelon levels, their attention,

and thus the level of interpretations they make, and thus the knowledge they actually extract from

the data stream, will be at radically di�erent levels.

5.5 Command as Constraint

Finally, we have stated that in the semiotic approach we consider control as a distributed property

entailed by various kinds of constraints from various sources. We must carefully consider how this

idea interacts with a more traditional sense of \command".

Consider the following sources of constraint within scos:

Commander's Intent: Mission goals propogate down through the echelon hierarchy.

Operational Indoctrination: Generally there is a wide range of shared knowledge within an sco,

including training, maps, language, concepts, known responses and pre-made plans, etc.

Information Channels and Modalities: The fundamental bandwidths and modalities of the

information network are a crucial form of constraint, and form the measurement input chan-

nels and action modalities for any sto.

Physical System: Finally, the \physical system" (as in the description of an sto from Sec. 4)

places a number of constraints in the form of terrain, weather, equipment failures, target

location, etc.

All of these factors end up controlling the actions of a particular unit at a particular echelon

level, in the sense that they constrain possible choices and thus partially limit the freedom of the

unit. Command itself is thereby just one more such constraint.

What about a situation where the non-command forms of constraint are actually more signi�-

cant? Consider in particular the \dynamic situation" model introduced in Sec. 5.3.1 and illustrated

in Fig. 7? If within a particular frame of time and space, a commander decides to let such a unit as

b direct attention, command resources, and e�ectively constrain the freedom to decide of the other

units around it, then this is, indeed, a form of control, whether or not we choose to recognize it as

form of command.
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